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Abstract 
Arid and semi-arid regions exhibit distinct spectrum features compared to other climatic regions. 

Hence, this work used remote sensing and geographical information system to identify environmental 

and land use alterations in the city of Basrah, located in southern Iraq. Various picture indices are 

employed. The analysis utilizes three mean Landsat photos from the years 2002, 2012, and 2022 to 

identify alterations in the environment and land utilization. This study suggests utilizing various indices 

to chart the alterations in the environment using Landsat 7 and 8. The mapping process would be 

facilitated by the cloud computing-based Google Earth Engine (GEE) platform, which efficiently 

manages images and processes spatiotemporal data on a large scale. Nevertheless, this platform 

necessitates the utilization of index formulae or combinations to facilitate the classification and 

enhance the precision in mapping the surface of the planet. The combination is made up of four indexes 

namely: vegetation index (NDVI), soil index (BSI), water index (NDWI), and buildings index (NDBI). 

In the change detection analysis, between 2012 and 2002, the vegetation cover had a serious 

degradation. The change detection results from BSI illustrate that the year of 2002 has the majority of 

bare soil rather than 2012 and 2022. According to the analysis, which was made on the Normalized 

Difference Moisture Index (NDMI) of Landsat (2012) image, the water level in the research area was 

increasing securely, while it was a decrease in 2002 compared to today. The process of urbanization is 

progressing as shows in the result of change detection analysis with the utilization of Normalized 

Difference Built-up Index (NDBI). The study investigates the changes in land use and land cover 

(LULC) patterns and its extent for the last twenty years using Maximum Likelihood Algorithm (MLA) 

and GIS technology. The maximum likelihood approach was used to classify the land use land cover 

(LULC) classes by using supervised classification technique. 

Within the 2002 and 2022 interval, there was a huge decrease of the area of vegetative land coverage, 

which decreased from 20.21% to 2.79%. On the other hand, the area of barren land experiences a little 

decrease, which changes from 67.18% to 64.57%. In the meanwhile, with the analyzed land use and 

land cover (LULC) Classes water body and built-up area in the research area are growing, from 

5.6618% to 13.31% and from 6.95% to 19.33% separately. 

The results suggest that prioritizing and implementing integrated land management and land use 

planning within the research area is essential. 

 

Keywords: NDVI, BSI, NDWI, NDBI, LULC change, Basrah, remote sensing, image indices, 

supervised classification 

 

1. Introduction 
In recent years, a variety of remote sensing techniques, such as aerial photography and 

satellite imaging, have come into common use for collecting data to map and monitor land 

use and land cover. Urban sprawl has caused urbanization rates and landscape changes to 

grow rapidly at metropolitan areas worldwide. These remote sensing data supply current 

information, as well as a synoptic view of landscape attributes and changes in metropolitan 

regions (Zha et al., 2003) [43]. 

Recently, remote sensing and GIS have been useful tools for studying various phenomena 

ranging from environmental impacts assessment and pollution monitoring using satellite 

images (Hadeel et al., 2011) [14]. Change Detection is the process of determining differences 

in the condition of an object or phenomenon by observing it at different times.  
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It’s basically concentrating on mostly measuring temporal 

impacts by gathering some datasets collected at different 

intervals in succession. Describing land degradation it’s like 

when people discuss about the loss in the quality or 

depletion of the potential or actual use of the spatial 

ecosystem, which was caused by the dynamic process, 

either naturally or man-made, is also referred to as land 

degradation. Change detection is often specified to the 

simultaneous acquisition of data sets needed to provide the 

analyst with the temporal dimension in the moiré. Although 

it can detect some changes between the sets, the change 

doesn’t explain explicitly how long the change has elapsed. 

Using spectral indices is an effective way to distinguish 

different types of land cover. Remote sensing has become a 

very powerful tool for detecting and mapping a wide range 

of characteristics on the Earth’s surface. Typical 

applications include vegetation, soil, and water monitoring, 

characterization of developed regions, and so on. One of the 

most prevalent and widely used vegetation indexes, the 

Normalized Difference Vegetation Index (NDVI), is 

abbreviated as NDVI, to assess the vegainess, the fitness of 

vegetation, and the disparity of vegation content. This 

knowledge can be obtained through a comparison of the red 

(R) bands of the electromagnetic spectrum with the near-

infrared (NIR) bands (Tucker, 1979) [38]. It involves various 

areas of research, such as the estimation of vegetation cover, 

the prediction of phenological changes, and the calculation 

of net primary production (Huang et al., 2014; Wu et al., 

2008) [19, 40]. 

The BSI is part of the Near Infrared and Shortwave Infrared 

cartridge, which characterizes the nature of a soil and is 

used to classify areas with little or no vegetation. The BSI is 

calculated by subtracting the reflectance values of the two 

bands. The soil analysis, land use and land cover change 

detection, monitoring soil conditions, and monitoring land 

degradation (Nguyen et al., 2021; Zhu, Han, et al., 2021 

water index is NDWI.) [27, 44]. 

To obtain water index, the near-infrared and shortwave 

infrared bands from the multispectral satellite or sensor are 

used to come up with this. This technique has been widely 

applied in many kinds of applications, such as water 

resources management, flood monitoring and coast line 

mapping. The NDBI is a well-known built-up index which 

acts as a tool in GIS. The calculation of this index would 

require the near-infrared and short wave infrared spectral 

bands to do the calculation. After getting the features, it has 

can be used to locate and map metropolitan areas and built-

up. It has later widely exploited in both urban monitoring 

planners’ use change and UHI. 

The investigation of different LULC modifications has been 

of utmost significance in recent periods. It carries an 

immense impact, not only on surroundings, inhabitant 

species, and variety of life, but as well on human societies. 

The term of LULC alteration can be defined as the progress 

from a specific land fully of complexion to another. 

Consider an example, mutation of the semi-natural into 

agriculture tracts, or wet region to urban stretch. 

It has been demonstrated by studies that changes in land use 

and land cover (LULC) are driven by a range of factors 

including population growth, urbanization, and economic 

development (Lambin et al., 2001) [23]. The increase in land 

conversion to agriculture means that there is serious 

deforestation and loss of natural habitat which, in 

consequence, has led to the decrease of biodiversity and 

disturbed ecological system (Foley et al., 2005) [10]. 

Urbanization, where the area of natural habitat are changed 

to build-up areas, causes depletion of ecosystems services 

and increasing environmental contamination (Seto et al., 

2012) [34]. 

The land use and land cover (LULC) classification is 

executed through the remote sensing and GIS to recognize 

the changes and keep it under observation. It is a technique 

to distinguish the changes in land use and land cover and 

monitoring over the geographic area holding a grip on time 

interval of change. The changes in land use and land cover 

(LULC) have major impact in physical environment and 

human societies. The deforestation and changes in land use 

cause the climate change producing the carbon store in the 

atmosphere (Houghton, 2003) [17]. Also, the changes in land 

use and land cover (LULC) has many impact in local 

climate changes involve the changes involve the 

temperature and precipitation patterns. It also effect on the 

water quality and availability (Pielke et al., 2011) [30]. 

The changes in land use are mostly caused by the increase in 

population, expansion of agriculture, urbanization, growing 

needs for energy and food and shifts in lifestyles and socio-

economic conditions. Therefore, Analysis of land use and 

land cover (LULC) change is a key source of data that 

support Decision Support Systems for policy makers 

(Tewabe and Fentahun, 2020) [36]. Alteration of land use and 

land cover (LULC) has been established as a major driver of 

environmental degradation and socio-economic instability 

(Lambin et al., 2001) [23]. Transformation of natural habitat 

into agricultural land, urbanization and infrastructure 

development resulted in depletion of biodiversity, soil 

erosion and harming quality of water (Geist & Lambin, 

2002) [13]. Moreover, alteration of land use and land cover 

(LULC) is interrelated with increasing greenhouse gas 

emission which contributed for climate change (Fearnside, 

2005) [9]. Indigenous populations frequently face 

dispossession, the disappearance of traditional livelihoods, 

and growing impoverishment from LULC change (Angelsen 

& Kaimovitz, 2001) [3]. Additionally, transforming LULC 

may help in exacerbating food insecurity. This is the case 

because the output of crops through soil degradation and 

reduced water availability decline (Schmidhuber & 

Tubiello, 2007) [33]. 

Various investigations have explored Land Use and Land 

Cover (LULC) dynamism in different parts of Iraq. These 

studies tried to inventory changes using Remote Sensing 

and GIS techniques via multitemporal and multispectral 

Satellite datasets e.g. Landsat, MODIS images collected in 

various periods of time. The results of these studies 

indicated the necessity of employing appropriate and 

sustainable Land Management techniques to mitigate the 

impacts of environmental degradation, and to ensure the 

eternal sustainability of Iraq's Natural resources. 

With 30-pixel spatial resolution, the analysis is undertaken 

with Landsat 7 and 8 satellite images making use of 

“categorical” method employed by Google Earth Engine 

(GEE) mapping platform. The outcomes of these studies 

may be helpful to key information regarding the shifts and 

alterations in the Land Use and Land Cover (LULC) in 

Basrah city. The data accessed might be handily employed 

in supervising and appraising the world physiographic of 

Land Use. Additionally, such analyses throw considerable 

light on the need of Nature Resource Management (NRM) 

sustainability with regarding the government key interest at 
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separate regional scale and at national scale, while helping 

decision-maker groups, unintentional and intentional 

stakeholders, which the local group have in Basrah 

province. 

 

2. Materials and Methods 

2.1 Study area 

Basrah City is situated in the southeast corner of Iraq 

approximately 420 km southeast of Baghdad, the capital of 

the Iraq. Basrah is located near to the Persian Gulf, at the 

point where the Shatt al-Arab River meets with the Gulf. 

This position makes the city very advantageous for trade 

and business. Basrah City covers an area of approximately 

181 km and has a very large population. Basrah is one of the 

largest cities in Iraq. 

Basrah City has a strong cultural heritage that was 

originated in the 7th century AD. At the time of the Abbasid 

Caliphate, Basrah City served as a major center for trade 

and business. It gained recognition for its lively markets, 

diverse culture, and notable architectural landmarks. 

Presently, the city accommodates numerous significant 

landmarks, such as the Basrah Museum, the Corniche, and 

the Old City, which exemplify its cultural and historical 

importance.  

Basrah City encounters various environmental issues, such 

as air and water pollution, desertification, and the 

repercussions of climate change. The city's close proximity 

to the Persian Gulf renders it susceptible to the adverse 

effects of rising sea levels, saltwater intrusion, and coastal 

erosion. In addition, the city's swift process of becoming 

more urbanized and industrialized has resulted in a rise in 

air pollution, which presents health hazards to the 

population.  

Geographically, Basrah city is situated. The astronomical 

position of the location is defined by its latitude, which falls 

between 30.20 and 30.50 degrees North, and its longitude, 

which falls between 47.25 and 47.55 degrees East. The 

elevation of the research region varies from -75 to 61 meters 

above the mean sea level, as shown in Figure 1.  

Basrah City, situated in the southern region of Iraq, 

encounters a scorching desert climate, distinguished by 

exceedingly high temperatures and arid conditions during 

summers, and rather temperate winters. The summer season 

in Basrah, spanning from May to October, is characterized 

by scorching temperatures and arid conditions. During the 

peak summer months of July and August, the average high 

temperature can surpass 40 °C (104 °F), and it is not 

unusual for temperatures to climb as high as 50 °C (122 °F). 

The summer heat in the city is severe because of its 

proximity to the desert and the Persian Gulf. In the summer, 

the nights are warm as well, with average low temperatures 

usually exceeding 30 °C (86 °F).  

The winter season, spanning from November to April, 

exhibits a comparatively temperate and agreeable climate. 

The mean maximum temperatures throughout the winter 

months fluctuate between 20 °C (68°F) and 25 °C (77°F), 

while the mean minimum temperatures can descend to 

approximately 10 °C (50°F).  

Precipitation in Basrah is infrequent and irregularly 

apportioned throughout the year. The city has an annual 

rainfall of less than 100 mm, with the majority of 

precipitation occurring from December to March. Despite 

this, even during these months, rainfall is infrequent and 

does not provide a substantial addition to the city's water 

resources. 

 

 
 

Fig 1: Study area map of Basrah City 
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Basrah City in summer is so hot and rainless have plentiful 

effects on the availability and quality of water in the city. 

The city is mainly supplied water from Shatt al-Arab River. 

But the river is easy to be polluted, the intruded salt water 

from the Arab Gulf and damaged by constructions of dams 

in the upper rivers. 

Situated in southern Iraq, the city of Basrah has notable 

geological features that have been studied extensively. To 

begin, the area lies in the Mesopotamian Fore deep, a 

significant tectonic depression that has developed due to the 

collision between the Arabian and Eurasian plates (Jassim 

and Goff, 2006) [21]. Moreover, the most characteristic 

sediments of the area are Quaternary alluvial and deltaic 

sediments, which were deposited by the Tigris and 

Euphrates rivers (Al-Jiburi and Al-Basrawi, 2015) [2]. 

Moreover, the geological pattern of Basrah is affected by 

numerous thrusts and thrust folds have the capacity to affect 

the location and form of hydrocarbon reserves there (Jassim 

and Goff 2006) [21]. More importantly, there are huge salt 

domes were also identified to be potential reservoirs in 

relation with above mentioned hydrocarbon reserves studies 

(Aqrawi et al. 2010) [4]. Moreover, in this region there are 

numerous amounts of ground water can be found in various 

layers in the Quaternary and Tertiary aquifers (Jiburi and 

Basrawi 2015) [2]. 

 

2.2. Data 

Two distinct types of satellite images; Landsat 7 and 

Landsat 8 were procured from the USGS archive website 

(http://earthexplorer.usgs.gov/). The image is in UTM 

projection with zone 38 N and obtain from the United States 

Geological Survey (USGS), Earth Explorer website (USGS, 

2017) [39]. Satellite images from the three designated years, 

2002, 2012 and 2022 are used to identify ever-changing 

Land Use and Land Cover (LULC) pattern and 

environmental indicators of the study area (Fig.2 and Fig. 

3). The satellite photos with the cloud percentage below 1 

percent were used to undergo the ease of analysis. All 

Landsat images were acquired to have cloud free images 

that properly reflect land use features to eliminate the 

impact of seasonal changes and atmospheric cloud cover on 

image quality. The Landsat image has a spatial resolution of 

30 meters by 30 meters. 

 

 
 

Fig 2: A flowchart for detecting changes in LULC and environmental indexes

 

 
 

Fig 3: The calculation steps for any index used in this study
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By using existing data of Basrah city, a Land Use and Land 

Cover (LULC) classification methodology was established. 

This included using Google Earth Pro, doing the GPS 

surveys of the site, collecting information from 

administrative office, interviews with local populations and 

stakeholders. The supervised classification was performed 

using Maximum Likelihood Algorithm (MLA) that employs 

different spectral signatures associated with each land use 

class. The signatures are created from specific 

representative samples of each training site's known Land 

Use and Land Cover (LULC) type. 

Multiple image indices are employed to classify the picture, 

including but not contained too: NDVI, BSI, NDWI, and 

NDBI. The particular prism indices employed are presented 

in the table beneath. 

NDVI: One of the most commonly employed remote 

sensing indices is the Normalized Difference Vegetation 

Index which measures the density and vitality of vegetation. 

It utilizes the near-infrared (NIR) and red (R) bands of a 

multispectral image, as designated by Rouse Jr. et al. in 

1974 [32]. The Normalized Difference Vegetation Index was 

calculated as NDVI = (Near Infrared-Red)/(Near Infrared + 

Red). An NDVI’s range is from -1 to 1 with greater values 

indicating denser and more compact vegetation (Tucker, 

1979) [38]. The instance created by Pettorelli et al. (2005) [29] 

is served for crop monitoring, forest cover mapping, and 

land degradation analysis. NDVI is broadly employed in 

research corridors such as agriculture, forestry and 

environmental monitoring (Kerr & Ostrovsky, 2003) [22]. 

The index used to measure the proportion of exposed soil 

surfaces is the Bare Soil Index (BSI). The bare soil index 

(BSI) is a remote sens-ing index that emphasizes the bare 

soil or limited vegetation regions. The BSI is adapted from 

the method of Gray (1980) who used Landsat Multi-spectral 

Scanner (MSS) and Thematic Mapper (TM) Images 

respectively. They derived BSI for assessing soil erosion. 

The BSI is based on the assumption that bare soil reflects 

much more energy in the near infrared (NIR) region but a 

little or none in the red region. The BSI is derived from the 

difference of energy between the NIR and R and divided by 

the sum of the same energy. The BSI is written as 

[BSI=(NIR-R)/(NIR+R)] On the formula, R represents a red 

band. Higher the BSI value, the soil showed higher ratio of 

bare soil or sparse vegetation (Diek, 2017) [8]. Index maps 

Soil Erosion in China The product provides evidence for the 

presence of exposed land surfaces and ternary composites. 

Land degradation initiates desertification processes by direct 

soil or sand. The BSI showed the possibility of monitoring 

the degree of land degradation or desertification. 

A remotely sensed index known as the Normalized 

Difference Water Index (NDWI) was employed to evaluate 

the water stress condition in plants by assessing variations in 

vegetation water content (Gao, 1996) [11]. The calculation of 

the NDWI is conducted using near infrared (NIR) and green 

(G) bands of a multispectral image. The equation describing 

the formula of the Normalized Difference Water Index 

(NDWI) is as follows:  

 

NDWI = (Green band solution-Near Infrared band solution) 

/ (Green band solution + Near Infrared band solution) 

 

The value of NDWI above zero denoted so-called water 

pixels. NDWI assumes that vegetation is dark in the NIR 

domain because of the high reflectivity of water. Hence, 

water in the plants will be highlighted in NIR because of 

this low reflectivity. But the vegetation increases the amount 

and reflectance in the green and decrease spectral 

reflectance in the NIR. Since the values of reflectance is 

bounded by zero and one, the range of NDWI between -1 to 

+1. 

The Normalized Difference Built-up Index is widely used 

for built-up areas and infrastructure detection and mapping 

including urban areas. It is based on the multispectral image, 

using the shortwave infrared and near infrared bands. There 

is a very simple calculation of NDBI as follows: NDBI = 

(SWIR-NIR) / (SWIR + NIR). High values of NDBI 

represent more density of built-upland. It can be used to 

monitor the urban expansion, land use change consequences 

and ecological influence of urbanization (Xu, 2008) [42].

 
Table 1: List of indexes involved in this study 

 

No Method Formula Reference 

1. Normalized Difference Vegetation Index (NDVI) NDVI = (NIR-R) / (NIR + R) Rouse et al., 1974 [32] 

2. Bare Soil Index (BSI) BSI = (SWIR + R)-(NIR + B) / (SWIR + R) + (NIR + B) Rikimaru et al., 2002 [31] 

3. Normalized Difference Water Index (NDWI) NDWI = (G-NIR) / (G + NIR) Gao, 1996 [11] 

4. Normalized Difference Built-up Index (NDBI) NDBI = (SWIR-NIR) / (SWIR + NIR) Zha et al., 2003 [43] 

Information: near-infrared (NIR), red (R), green (G), blue (B), and short-wave infrared (SWIR), bands. 
 

2.3. The LULC classes 

Based on the analysis of land use, spectral responses on 

Landsat images, extensive field observation, and a literature 

review, the city of Basrah was categorized into four main 

classes or types of land use and land cover (LULC): water 

bodies, vegetation, barren land, and built-up area (Table 2). 

Subsequently, a supervised classification method was 

employed by utilizing a maximum likelihood algorithm. 

(Jaleta et al., 2016) [20] Provided a list of the LULC classes 

along with their corresponding descriptions. 

 
Table 2: LULC classes and description 

 

Land Use/Land Cover Type Description 

Vegetation Lands occupied by crops, farmland, plantation, and fallow land. 

Waterbody Rivers, ponds, swamps, and reservoirs. 

Built-up area Infrastructures include houses, asphalt roads, buildings, and urban areas 

Bare land Lands without vegetation, crops or grasses, and barren soils. 
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2.4 Accuracy assessment of LULC classification 

Conducting an accuracy analysis is the last stage of the 
research process. It is necessary to determine the level of 
accuracy of the investigation (Story & Congalton, 1986) [35]. 
Validation data is crucial in remote sensing investigations to 
ensure proper analysis and precise presentation of results 
(Lewis & Brown, 2001; Hu & Wang, 2013) [24, 18]. 
Evaluating the accuracy of a classified image is crucial for 
monitoring changes in land use and land cover (LULC) and 
determining the acceptability of the classification procedure. 
To ensure sufficient representation of all four land use and 
land cover (LULC) classes, 80 reference data points were 
selected based on their proportional area. The source of the 
reference ground truth data was chosen so that it should 
exist in the Landsat scenes of 2002, 2012 and 2022 and 
Google Earth map. Meanwhile, incorporating local datasets 
validated land use classifications. The reference data was 
obtained and established through visual inspections and 
modification (Figure 1). The accuracy assessment is the first 
step to assess quality and identify errors associated with 
input data processing. For accuracy assessment, a confusion 
matrix table is used, where the classification accuracy is 
evaluated in terms of Overall Accuracy (OA) and Kappa 
Statistics (K). Berberoglu & Akin (2009) [5] assert that error 
matrix and Kappa analysis are commonly adopted for 
reviewing land use change detection accuracy. The LULC 
classification accuracy was assessed using overall accuracy 
and kappa coefficient, which are calculated by investigating 
a “confusion matrix” or “error matrix” (Liu et al., 2007) [25]. 
Overall accuracy was computed by dividing the total 
number of correctly allocated pixels by the total number of 
referenced pixels in the matrix. (Tilahun and Teferie, 2015) 
[37]. 
A post-classification analysis was conducted for each 
classified Landsat image. A comparison was made for each 
classified Land Use and Land Cover (LULC) map from 
2002 to 2012, lastly from 2012 to 2022. The software 
programs Arc GIS 10.8, QGIS ver. 2.8.3, Google Earth 
Engine, and Google Earth Pro effectively used for the 
evaluation and identification of the classified Landsat 

image. 
 

2.5. Trends of LULC change analysis 
Analyzing Land Use and Land Cover (LULC) change trend 
is important since it helps to identify specific land use 
classes or types which are undergoing transitions to other 
land uses (Tewabe and Fentahun, 2020) [36]. An analysis 
study was conducted to detect and analyze the trend of 
changes in land use and land cover (LULC) in Basrah city. 
The analysis studies compares the period from 2002 to 2012 
and 2012 to 2022, which this study uses to compare the 
extent of each land use and land cover (LULC) class in 
different time periods. Land use land cover (LULC) studies 
provide data on the scale, scope and trajectory of land use 
and land cover transformations through time. The 
percentage and rate of changes in the study area are 
calculated using the number of differences between two 
time periods. 
 

3. Results and Discussion 

3.1. Analysis of environmental changes 
Table 3 displays the NDVI findings for the study region 
during three specific time intervals: 2002, 2012, and 2022. 
The findings indicate the subsequent patterns: 
The water coverage expanded from 68.48 km2 (5.88%) in 
2002 to 139.86 km2 (12.67%) in 2012 and then remained 
relatively constant at 140.08 km2 (12.03%) in 2022. In 2002, 
the amount of exposed soil declined from 67.61 km2 (5.81% 
of the total area) to 35.14 km2 (3.18% of the total area) in 
2012. There was a small increase to 39.47 km2 (3.39% of 
the total area) in 2022. The extent of sparsely vegetated land 
declined from 1014.23 km2 (87.11%) in 2002 to 919.92 km2 
(83.35%) in 2012, before subsequently rising to 958.21 km2 
(82.3%) in 2022. The extent of intermediate vegetation 
declined from 12.94 km2 (1.11%) in 2002 to 8.55 km2 
(0.77%) in 2012, but thereafter experienced a substantial 
increase to 24.92 km2 (2.14%) in 2022. The extent of dense 
vegetation declined from 1.02 km2 (0.09%) in 2002 to 0.22 
km2 (0.02%) in 2012 and thereafter rose to 1.58 km2 
(0.14%) in 2022.  

 

Table 3: NDVI results for the study area 
 

No. Class 
2002 2012 2022 

Area (km2) Percentage Area (km2) Percentage Area (km2) Percentage 

1 Water 68.48 5.88 139.86 12.67 140.08 12.03 

2 Bare soil 67.61 5.81 35.14 3.18 39.47 3.39 

3 Sparse Vegetation 1014.23 87.11 919.92 83.35 958.21 82.3 

4 Moderate vegetation 12.94 1.11 8.55 0.77 24.92 2.14 

5 Dense vegetation 1.02 0.09 0.22 0.02 1.58 0.14 
 

Figure 4 illustrates a favorable trend in the study region, 
showing a rise in vegetation cover and water bodies, and a 
decline in areas of bare soil and sparse vegetation. The 

observed modifications indicate a general enhancement in 
the environmental circumstances within the research region 
throughout the years. 
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Fig 4: NDVI maps of Basrah city for the years 2002-2012-2022 

 

Table 4 displays the area and proportion of the study area 

that has been classified into three distinct groups: Non-Bare 

Soil, Low Bare Soil, and Moderate Bare Soil. In 2002, the 

largest portion of the land (79.05%) was categorized as Low 

Bare Soil, with 20.95% classed as Non-Bare Soil, and a very 

small part (0.04km²) designated as Moderate Bare Soil. In 

2012, there was a comparable pattern where 76.07% of the 

region was categorized as Low Bare Soil and 23.92% as 

Non-Bare Soil. The extent of Moderate Bare Soil did not 

change and remained at 0.04 km². Nevertheless, in the year 

2022, there was a notable change in the BSI outcomes. The 

proportion of Non-Bare Soil area experienced a significant 

growth, reaching 59.66%, but the proportion of Low Bare 

Soil area declined to 40.33%. The extent of Moderate Bare 

Soil also experienced a minor rise, reaching 0.09 km². 

 
Table 4: BSI results for the study area 

 

No. Class 
2002 2012 2022 

Area (km2) Percentage Area (km2) Percentage Area (km2) Percentage 

1 Non-Bare Soil 243.86 20.95 261.96 23.92 694.61 59.66 

2 Low Bare Soil 920.37 79.05 833.01 76.07 469.5 40.33 

3 Moderate Bare Soil 0.04 0 0.04 0 0.09 0.01 

 

Figure 5 displays the BSI outcomes for the study region, 

demonstrating the spatial arrangement of various BSI 

categories throughout the years. By analyzing both Table 3 

and Figure 4, it is possible to identify some significant 

patterns. The Non-Bare Soil region has shown a substantial 

growth from 2002 to 2022. This graph suggests a decline in 

the extent of exposed soil over the span of two decades. 

Simultaneously, the area with low bare soil has also 

experienced a decline from 2002 to 2022, providing more 

evidence of the decreasing coverage of bare soil.  

On the other hand, the area of Moderate Bare Soil has 

remained relatively small and consistent across the years, 

suggesting that there has been no substantial alteration in 

this category over the study period. These tendencies 

collectively offer valuable information on the evolving soil 

conditions in the research area as time progresses.  
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Fig 5: BSI maps of Basrah city for the years 2002-2012-2022 

 

The NDWI findings for the research region, as depicted in 

Table 4.2, unveil multiple patterns. During the study period, 

the area affected by drought conditions gradually grew from 

9.62 km2 (0.83%) in 2002 to 10.4 km2 (0.95%) in 2012, and 

then expanded further to 17.16 km2 (1.48%) in 2022.  

However, there was a notable reduction in the area affected 

by moderate drought conditions, with a decline from 

1079.12 km2 (92.88%) in 2002 to 937.87 km2 (85.43%) in 

2012. Subsequently, there was a modest rise to 991.4 km2 

(85.33%) in 2022, suggesting a minor revival of moderate 

drought conditions. The extent of the area affected by 

flooding or high humidity conditions originally grew from 

29.2 km2 (2.51%) in 2002 to 53.87 km2 (4.91%) in 2012. 

Nevertheless, this pattern was reversed in the subsequent 

decade, resulting in a reduction of the area to 38.33 km2, 

which accounts for a decrease of 3.3%, as of 2022.  
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Finally, the research period witnessed a steady growth in the 

water surface area. The area increased from 43.94 square 

kilometers (3.78% of the total) in 2002 to 95.72 square 

kilometers (8.72% of the total) in 2012, and then further to 

114.96 square kilometers (9.89% of the total) in 2022. The 

data indicates a consistent increase in the size of the water 

surface area throughout the duration of the twenty-year 

research.  

 
Table 5: NDWI results for the study area 

 

No. Class 
2002 2012 2022 

Area (km2) Percentage Area (km2) Percentage Area (km2) Percentage 

1 Drought 9.62 0.83 10.4 0.95 17.16 1.48 

2 Moderate drought 1079.12 92.88 937.87 85.43 991.4 85.33 

3 Flooding, humidity 29.2 2.51 53.87 4.91 38.33 3.3 

4 Water surface 43.94 3.78 95.72 8.72 114.96 9.89 

 

The patterns reported in Table 5 for the NDWI categories 

align with the patterns depicted in Fig. 6. Over the years, 

there has been an increase in the areas affected by drought 

and water surface, but the area experiencing moderate 

drought fell from 2002 to 2012 and then saw a minor 

increase from 2012 to 2022. The extent of flooding 

experienced an initial increase in humidity from 2002 to 

2012, followed by a subsequent drop from 2012 to 2022. 

 

 
 

Fig 6: NDWI maps of Basrah city for the years 2002-2012-2022 
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Both Table 6 and Figure 7 illustrate a rise in the area of 

turbid water from 4.76% in 2002 to 9.66% in 2022. There is 

a steady rise in the amount of cloudy water observed during 

the 20-year timeframe. The proportion of pure water 

expanded from 15.09% in 2002 to 24.86% in 2022. This 

pattern indicates a rise in the transparency and maybe the 

volume of pristine water regions over a period of time. The 

percentage of land classified as soil, vegetation, and 

accumulation decreased from 80.15% in 2002 to 65.47% in 

2022. This signifies a notable alteration in the utilization of 

land or the physical characteristics of land, resulting in a 

decrease in regions that are not categorized as bodies of 

water or developed areas. The extent of significant 

developed land is small, with a marginal rise from 0% in 

2002 to 0.01% in 2022, suggesting a gradual but steady 

growth in urbanization or built-up areas. 

 
Table 6: NDBI results for the study area 

 

No. Class 
2002 2012 2022 

Area (km2) Percentage Area (km2) Percentage Area (km2) Percentage 

1 Turbid water 55.36 4.76 41.9 3.8 112.46 9.66 

2 Clean water 175.69 15.09 255.09 23.13 289.45 24.86 

3 Soil, Vegetation, Buildup 933.19 80.15 806 73.07 762.25 65.47 

4 Major Built-up 0.02 0 0 0 0.1 0.01 

5 Turbid water 55.36 4.76 41.9 3.8 112.46 9.66 

 

Figure 7 exactly corresponds to the data reported in Table 6 

and visually represents the changes in different land and 

water categories during the same timeframes. The data 

emphasizes the changes in murky water, clear water, 

soil/vegetation accumulation, and significant urbanized 

regions. An evident decline in the soil, vegetation, and 

developed area indicates a change in land cover, maybe 

caused by a rise in water bodies or alterations in land 

utilization. However, the small rise in large developed 

regions suggests that urban growth has not had a substantial 

role in the research area over the observed timeframe. 

This image provides a graphical representation of the NDBI 

findings for the research area, highlighting important 

patterns. The area of water with high levels of suspended 

particles, indicated by the color red, had a substantial rise 

between 2012 and 2022. The region designated for clean 

water, indicated by the color blue, consistently expanded 

throughout the course of 20 years. Conversely, the soil, 

vegetation, and built-up area, depicted in green, diminished 

with time. Finally, the predominant developed region, 

depicted in purple, remained relatively modest over the 

whole duration, so emphasizing that urban growth did not 

significantly contribute to the alterations in the studied area.  
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Fig 7: NDBI maps of Basrah city for the years 2002-2012-2022 

 

Figure 9 presents a graphical depiction of the NDBI findings 

for the research region, providing a spatial view of the 

distribution of several NDBI categories. The visual 

representation is crucial for comprehending the geographic 

distribution and density of these classes throughout the 

study area.  

An important tendency to note is the rise in both locations 

with cloudy and clear water. The diagram illustrates the 

growth of these regions throughout time, serving as a visual 

validation of the information contained in Table 6. This 

trend may suggest alterations in the quality and amount of 

water, or both, and could be a manifestation of shifts in 

environmental conditions, such as variations in precipitation 

patterns or modifications in land use.  

In contrast, the image also demonstrates a decline in the 

areas categorized as soil, vegetation, and built-up land. The 

decrease in size of these areas over the research period is 

clearly shown in Figure 9. This phenomenon can be 

attributed to a multitude of variables, encompassing natural 

processes such as erosion, as well as human activity like 

urbanization and deforestation.  

 

3.2 Analysis of LULC classification 

During the classification of Landsat images (2002, 2012, 

and 2022), four main land use and land cover (LULC) types 

were considered in the study region: Waterbody, 

Vegetation, Bare land, and Built-up area (Fig. 8). Table 7 

presents the area coverage in kilometer squares (km2) and 

percentage (%) of each land use and land cover (LULC) 

class in Basrah city for the three time periods (2002, 2012, 

and 2022). Figure 9 displays the extent of land use and land 

cover (LULC) for each class during the study periods. Table 

7 displays the alterations in land use and land cover (LULC) 

in Basrah city between 2002 and 2022. The table 

demonstrates a substantial rise in the area covered by water 

bodies, which grew from 65.75 km² (5.66%) in 2002 to 

154.59 km² (13.31%) in 2022. This indicates a growth of 

88.84 km² (7.65%) during the span of 20 years, as presented 

in Table 7. This phenomenon aligns with prior research that 

has documented the enlargement of aquatic ecosystems in 

urban regions as a result of human endeavors such as 

construction and infrastructure advancement. 

In contrast, the region experienced a sharp drop in 

vegetation coverage. It plummeted from 234.78 km² 

(20.21%) in 2002 to 32.43 km² (2.79%) in 2022, which 

means that there was a huge drop of 202.35 km² (17.42%) in 

the same period (Table 7). The decline is worrisome since 

plants have a critical role in conserving ecosystem services 

and reducing the intensity of urban heat island effect 

(Bolund & Hunhammar, 1999) [6]. 

Notable changes in the extent of barren land and developed 

areas, indicated in Table7, can be observed (Table 7). The 

area of barren land decreased from 780.59 km² (67.18%) in 

2002 to 750.18 km² (64.57%) in 2022. The built-up areas 

increased from 80.77 km² (6.95%) in 2002 to 224.63 km² 

(19.33%) in 2022. These adjustments imply that 

urbanization and human activities have resulted in changes 

from natural habitats to developed areas, leading to habitat 

fragmentation and the decline of biodiversity (Hannah et al., 

1995) [15]. 

 
Table 7: The area coverage in kilometer squares (km2) and percentage (%) of LULC classes in Basrah city 

 

LULC Category 2002 2012 2022 

 Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%) 

Water body 65.75 5.66 183.33 15.78 154.59 13.31 

Vegetation 234.78 20.21 125.49 10.8 32.43 2.79 

Barren land 780.59 67.18 684.45 58.91 750.18 64.57 

Built-up area 80.77 6.95 168.58 14.51 224.63 19.33 

TOTAL 1161.85 100 1161.85 100 1161.85 100 
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Fig 8: Land use / Land cover maps (2002-2022) 

 

Table 8 and Figure 10 display the land use and land cover 

(LULC) changes in Basrah city on 2002 till 2022. This table 

and figure in this paper show the changes in land use and 

land cover (LULC) in Basrah city from 2002 till 2022. In 

the table, there has been a significant shift in land use and 

land cover (LULC) classes over the two decades. The area 

covered by water bodies experienced a notable increase of 

88.84 km² (7.65%) between 2002 and 2022. This increase 

was mostly driven by a considerable growth of 117.58 km² 

(10.12%) from 2002 to 2012. However, there was a 

subsequent reduction of 28.74 km² (-2.47%) from 2012 to 

2022. 

On the other hand, the amount of vegetation in the region 

declined by 202.35 km² (-17.42%) from 2002 to 2022. This 

reduction consisted of a decrease of 109.29 km² (-9.41%) 

from 2002 to 2012, followed by a further decrease of 93.06 

km² (-8.01%) from 2012 to 2022, as seen in table 7. The 

observed pattern aligns with prior research indicating a 
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decrease in vegetation density in urban regions as a result of 

urbanization and human actions.  

The extent of barren land dropped by 30.41 km² (-2.61%) 

from 2002 to 2022, with a decline of 96.14 km² (-8.27%) 

from 2002 to 2012. However, there was an increase of 65.73 

km² (5.66%) from 2012 to 2022, as shown in Table 7. This 

pattern aligns with the results of other studies that have 

documented a decline in unproductive land as a result of 

urbanization and changes in land use (Li et al., 2019).  

Moreover, the total land area occupied by developed areas 

grew by 143.86 km² (12.38%) between 2002 and 2022. This 

growth consisted of an increase of 87.81 km² (7.56%) from 

2002 to 2012, followed by an additional increase of 56.05 

km² (4.82%) from 2012 to 2022 (Table 7). The pattern is 

consistent with previous research which showed that, as 

cities grew and the populations expanded. 

 

 
 

Fig 9: Area of LULC classes (2002-2022) 

 
Accuracy of the classification was assessed using the LULC 

maps from 2002, 2012, and 2022. The overall accuracy of 

the 2002, 2012, and 2022 LULC maps were 93.75%, 100%, 

and 94.73% respectively. The kappa coefficients for these 

maps were 0.91, 1.00, and 0.93 respectively. Therefore, 

these findings suggest that the classified map and the actual 

land use and land cover (LULC) classes exhibited 

agreement. The classified map also identified the minimum 

level of accuracy that is necessary for the post-classification 

activities as will be discussed in the following sub-section. 

 
Table 8: LULC change analysis in 10 years’ interval from 2002 to 2022. 

 

LULC Category 2002-2012 2012-2022 2002-2022 

 
Area (km2) Change (%) Area (km2) Change (%) Area (km2) Change (%) 

Water body 117.58 10.12 -28.74 -2.47 88.84 7.65 

Vegetation -109.29 -9.41 -93.06 -8.01 -202.35 -17.42 

Barren land -96.14 -8.27 65.73 5.66 -30.41 -2.61 

Built-up area 87.81 7.56 56.05 4.82 143.86 12.38 
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Fig 10: Rate of class’s area change for the study area 

 

4. Conclusion 

This study aims to utilize geospatial technology to examine 

the dynamics of Land Use Land Cover (LULC) in Basrah 

province for the last 20 years (2002-2022). These changes 

were investigated by applying satellite images for (2002, 

2012, 2022). Only Landsat images with less than 1% cloud 

cover were used in the study area to enable the study to be 

done. To avoid the seasonal variations effect and the effect 

of atmosphere cloud cover which causes in degradation of 

the image quality, this requires obtaining the images used to 

be cloud free and to represents the land cover feature object 

of interest correctly. During the 20 years between 2002 and 

2022, Basrah city had many changes in Land Use and Land 

Cover (LULC). The extent of water bodies had a significant 

increase, rising from 65.75 km² (5.66%) in 2002 to 154.59 

km² (13.31%) in 2022, indicating a major growth in the area 

covered by water bodies. Conversely, there was a 

substantial decline in the extent of vegetation, dropping 

from 234.78 km² (20.21%) in 2002 to 32.43 km² (2.79%) in 

2022, signifying a noteworthy depletion of vegetation 

during the same timeframe. The amount of land that was 

unproductive demonstrated a modest decrease from 780.59 

sq. km2 (67.18%) in 2002 to 750.18 sq. km2 (64.57%) in 

2022. What significantly increased is the urbanization as the 

urban areas multiplied, it increased from 80.77 sq.km2 

(6.95%) in 2002 to 224.63 sq. km (19.33%) in 2022. 

The present research has shown that the recorded 

transformations in Land Use and Land Cover (LULC) are 

largely the outcome of the swelling populace and the 

subsequent demand of natural resources which ultimately 

caused deforestation for different purposes in the city of 

Basrah. Definitely, these changes of LULC prompted a 

number of negative consequences on our planet Earth, for 

example, land degradation and erosions, declining 

biodiversity, destructions of ecosystem services and 

disturbance of hydrologicals cycle. 

The research domain shows a worrying deficit of arable 

cultivable acres due to the conversion rate of bushland, 

grassland, woodland, and steep slopes for agricultural 

purposes for crop cultivation, hence resulting in significant 

levels of land degradation and soil erosion. Moreover, the 

cultivation of lands that are marginal and of steep slope, 

without drawing an appropriate soil management plan, lead 

to significant levels of soil degradation, and in case of a 

heavy rainfall or flood, the runoff of soil will affect the local 

stream; thereafter, simply because of the siltation of the 

stream, it would not be lucrative for fisheries. 

Many people living in poverty depend on the sale of 

firewood, charcoal, and construction materials as their main 

income-producing activities. Consequently, the application 

sustainable integrated watershed management approaches 

are crucial. 

The findings demonstrate the in-scope area hugely demand 

sustainable LULC approaches such as integrated watershed 

management for conserving and utilizing the NMSs wisely 

in the future recommended that the locals, stakeholders, 

politicians, governmental and non-governmental 

organizations has to have roles in enhancing awareness. 

 

5. References 

1. Ahmed A, Al-Saady YI, Al-Khafaji AK, Gloaguen R. 

Environmental change detection in the central part of 

Iraq using remote sensing data and GIS. Iraqi Journal of 

Science. 2014;7(3). 

2. Al-Jiburi HK, Al-Basrawi NH. Hydrogeological map of 

Iraq, scale 1:1000 000, 2013. Iraqi Bulletin of Geology 

and Mining. 2015;11(1):17-26. 

3. Angelsen A, Kaimowitz D, eds. Agricultural 

Technologies and Tropical Deforestation. CAB 

International; c2001. 

4. Aqrawi AA, Goff JC, Horbury AD, Sadooni FN. The 

Petroleum Geology of Iraq (Vol. 424). Beaconsfield: 

Scientific Press; c2010. 

5. Berberoglu S, Akın A. Assessing different remote 

sensing techniques to detect land use/cover changes in 

the eastern Mediterranean. Turkish Journal of 

Agriculture and Forestry. 2009;11(1):46-53. 

6. Bolund P, Hunhammar S, Hunhammar S. Ecosystem 

https://www.geojournal.net/


International Journal of Geography, Geology and Environment  https://www.geojournal.net 

~ 444 ~ 

services in urban areas. Ecological Economics. 

1999;29(2):293-301. 

7. Chen X, Zhao HM, Li P, Yin ZY. Remote sensing 

image-based analysis of the relationship between urban 

heat island and land use/cover changes. International 

Journal of Remote Sensing. 2006;104(2):133-146. 

8. Diek S, Fornallaz F, Schaepman ME, De Jong R. Barest 

pixel composite for agricultural areas using Landsat 

time series. Remote Sensing. 2017;9(12):1245. 

9. Fearnside PM. Deforestation in Brazilian Amazonia: 

history, rates, and consequences. Conservation Biology. 

2005;19(3):680-688. 

10. Foley JA, DeFries R, Asner GP, et al. Global 

consequences of land use. Science. 

2005;309(5734):570-574. 

11. Gao BC. NDWI-A normalized difference water index 

for remote sensing of vegetation liquid water from 

space. Remote Sensing of Environment. 

1996;58(3):257-266. 

12. Gao Q, Zribi M, Escorihuela MJ, Baghdadi N. 

Synergetic use of Sentinel-1 and Sentinel-2 data for soil 

moisture mapping at 100 m resolution. Sensors. 

2017;17(9):1966. 

13. Geist HJ, Lambin EF. Proximate causes and underlying 

driving forces of tropical deforestation: Tropical forests 

are disappearing as the result of many pressures, both 

local and regional, acting in various combinations in 

different geographical locations. BioScience. 

2002;52(2):143-150. 

14. Hadeel AS, Jabbar MT, Chen X. Remote sensing and 

GIS application in the detection of environmental 

degradation indicators. Journal of Environmental 

Management. 2011;14(1):39-47. 

15. Hannah L, Carr JL, Lankerani A. Human disturbance 

and natural habitat: a biome level analysis of a global 

data set. Biodiversity and Conservation. 1995;4(2):128-

155. 

16. He C, Shi P, Xie D, Zhao Y. Improving the normalized 

difference built-up index to map urban built-up areas 

using a semiautomatic segmentation approach. Remote 

Sensing Letters. 2010;1(4):213-221. 

17. Houghton RA. Revised estimates of the annual net flux 

of carbon to the atmosphere from changes in land use 

and land management 1850-2000. Tellus B: Chemical 

and Physical Meteorology. 2003;55(2):378-390. 

18. Hu S, Wang L. Automated urban land-use classification 

with remote sensing. International Journal of Remote 

Sensing. 2013;34(3):790-803. 

19. Huang J, Wang H, Dai Q, Han D. Analysis of NDVI 

data for crop identification and yield estimation. IEEE 

Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing. 2014;7(11):4374-

4384. 

20. Jaleta D, Mbilinyi B, Mahoo HF, Lemenih M. 

Evaluation of Land Use/Land Cover Changes and 

Eucalyptus Expansion in Meja Watershed, Ethiopia. 

Ethiopian Journal of Environmental Studies & 

Management. 2016;7(3):1-2. 

21. Jassim SZ, Goff JC. Eds. Geology of Iraq. DOLIN, 

SRO; c2006. 

22. Kerr JT, Ostrovsky M. From space to species: 

ecological applications for remote sensing. Trends in 

Ecology & Evolution. 2003;18(6):299-305. 

23. Lambin EF, Turner BL, Geist HJ, et al. The causes of 

land-use and land-cover change: moving beyond the 

myths. Global Environmental Change. 2001;11(4):261-

269. 

24. Lewis HG, Brown M. A generalized confusion matrix 

for assessing area estimates from remotely sensed data. 

International Journal of Remote Sensing. 

2001;22(16):3045-3050. 

25. Liu C, Frazier P, Kumar L. Comparative assessment of 

the measures of thematic classification accuracy. 

International Journal of Remote Sensing. 

2007;28(4):847-854. 

26. McFeeters SK. The use of the Normalized Difference 

Water Index (NDWI) in the delineation of open water 

features. International Journal of Remote Sensing. 

1996;17(7):1425-1432. 

27. Nguyen CT, Chidthaisong A, Kieu Diem P, Huo LZ. A 

modified bare soil index to identify bare land features 

during agricultural fallow-period in Southeast Asia 

using Landsat 8. Land. 2021;10(3):231. 

28. Nugroho JT. Identification of Inundated Area Using 

Normalized Difference Water Index (NDWI) on 

lowland region of Java Island. International Journal of 

Remote Sensing and Earth Sciences (IJReSES). 

2013;10(2):59-70. 

29. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker 

CJ, Stenseth NC. Using the satellite-derived NDVI to 

assess ecological responses to environmental change. 

Trends in Ecology & Evolution. 2005;20(9):503-510. 

30. Pielke Sr RA, Pitman A, Niyogi D, Mahmood R, 

McAlpine C, Hossain F, et al. Land use/land cover 

changes and climate: Modeling analysis and 

observational evidence. Wiley Interdisciplinary 

Reviews: Climate Change. 2011;2(6):828-850. 

31. Rikimaru A, Roy PS, Miyatake S. Tropical forest cover 

density mapping. Tropical Ecology. 2002;43(1):39-47. 

32. Rouse JW, Haas RH, Schell JA, Deering DW. 

Monitoring vegetation systems in the Great Plains with 

ERTS. NASA Spec. Publ. 1974;351(1):309. 

33. Schmidhuber J, Tubiello FN. Global food security 

under climate change. Proceedings of the National 

Academy of Sciences. 2007;104(50):19703-19708. 

34. Seto KC, Reenberg A, Boone CG, Fragkias M, Haase 

D, Langanke T, et al. Urban land teleconnections and 

sustainability. Proceedings of the National Academy of 

Sciences. 2012;109(20):7687-7692. 

35. Story M, Congalton RG. Accuracy assessment: a user's 

perspective. 1986;52(3):397-414. 

36. Tewabe D, Fentahun T. Assessing land use and land 

cover change detection using remote sensing in the 

Lake Tana Basin, Northwest Ethiopia. 2020;6(1):15-27. 

37. Tilahun A, Teferie B. Accuracy Assessment of Land 

Use Land Cover Classification using Google Earth. 

2015;4(4):1-10. 

38. Tucker CJ. Red and photographic infrared linear 

combinations for monitoring vegetation. Remote 

Sensing of Environment. 1979;8(2):127-150. 

39. US Geological Survey. Landsat Data; USGS: Reston, 

VA, USA; c2017. 

40. Wu C, Niu Z, Tang Q, Huang W. Estimating 

chlorophyll content from hyperspectral vegetation 

indices: Modeling and validation. Agricultural and 

Forest Meteorology. 2008;148(8-9):1230-1241. 

41. Xu H. Modification of normalised difference water 

index (NDWI) to enhance open water features in 

https://www.geojournal.net/


International Journal of Geography, Geology and Environment  https://www.geojournal.net 

~ 445 ~ 

remotely sensed imagery. International Journal of 

Remote Sensing. 2006;27(14):3025-3033. 

42. Xu H. A new index for delineating built-up land 

features in satellite imagery. 2008;29(14):3635-3653. 

43. Zha Y, Gao J, Ni S. Use of normalized difference built-

up index in automatically mapping urban areas from 

TM imagery. International Journal of Remote Sensing. 

2003;24(3):583-594. 

44. Zhu XM, Song XN, Leng P, Guo D, Cai SH. Impact of 

atmospheric correction on spatial heterogeneity 

relations between land surface temperature and 

biophysical compositions. IEEE Transactions on 

Geoscience and Remote Sensing. 2021;59(3):2680-

2697. 

45. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al. 

Prevalence, incidence, and outcome of non-alcoholic 

fatty liver disease in Asia, 1999-2019: A systematic 

review and meta-analysis. The Lancet Gastroenterology 

& Hepatology. 2019 May;4(5):389-398. 

https://www.geojournal.net/

